Responses of anterior lateral line afferent neurones to water flow.

نویسندگان

  • R Voigt
  • A G Carton
  • J C Montgomery
چکیده

The mechanoreceptive lateral line system detects hydrodynamic stimuli and plays an important role in a number of types of fish behaviour, including orientation to water currents. The lateral line is composed of hair cell receptor organs called neuromasts that occur as superficial neuromasts on the surface of the skin or canal neuromasts located in subepidermal canals. Both are innervated by primary afferents of the lateral line nerves. Although there have been extensive studies of the response properties of lateral line afferents to vibrating sources, their response to water flow has not been reported. In this study, we recorded extracellularly from anterior lateral line afferents in the New Zealand long-fin eel Anguilla dieffenbachii while stimulating the eel with unidirectional water flows at 0.5-4 cm s(-)(1). Of the afferents, 80 % were flow-sensitive to varying degrees, the response magnitude increasing with flow rate. Flow-sensitive fibres gave non-adapting tonic responses, indicating that these fibres detect absolute flow velocity. Further studies are needed to confirm whether flow-sensitive and flow-insensitive fibres correlate with superficial and canal neuromasts, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physiology of afferent neurons in larval zebrafish provides a functional framework for lateral line somatotopy.

Fishes rely on the neuromasts of their lateral line system to detect water flow during behaviors such as predator avoidance and prey localization. Although the pattern of neuromast development has been a topic of detailed research, we still do not understand the functional consequences of its organization. Previous work has demonstrated somatotopy in the posterior lateral line, whereby afferent...

متن کامل

Title: Physiology of Afferent Neurons in Larval Zebrafish Provides a Functional 1 Framework for Lateral Line Somatotopy 2 3

20 Fishes rely on the neuromasts of their lateral line system to detect water flow 21 during behaviors such as predator avoidance and prey localization. While the pattern of 22 neuromast development has been a topic of detailed research, we still do not understand 23 the functional consequences of its organization. Previous work has demonstrated 24 somatotopy in the posterior lateral line, wher...

متن کامل

Measuring flow velocity and flow direction by spatial and temporal analysis of flow fluctuations.

If exposed to bulk water flow, fish lateral line afferents respond only to flow fluctuations (AC) and not to the steady (DC) component of the flow. Consequently, a single lateral line afferent can encode neither bulk flow direction nor velocity. It is possible, however, for a fish to obtain bulk flow information using multiple afferents that respond only to flow fluctuations. We show by means o...

متن کامل

Neuronal differences prefigure somatotopy in the zebrafish lateral line.

The central projection of the fish lateral line displays somatotopic ordering. In order to know when and how this ordering is established, we have labelled single sensory neurones and followed the growth of their neurites. We show that the neuromast cells and the corresponding neurones are not related by a fixed lineage, and also that somatotopic differences between anterior and posterior line ...

متن کامل

Heterogeneity and dynamics of lateral line afferent innervation during development in zebrafish (Danio rerio).

The lateral line system of larval zebrafish is emerging as a model to study a range of topics in neurobiology, from hair cell regeneration to sensory processing. However, despite numerous studies detailing the patterning and development of lateral line neuromasts, little is known about the organization of their connections to afferent neurons and targets in the hindbrain. We found that as fish ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 203 Pt 16  شماره 

صفحات  -

تاریخ انتشار 2000